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ABSTRACT
In view of increasing popularity of smart home applications,
prior works on wireless sensing and implementation with mo-
bile devices motivated us to explore the possibility of imple-
menting respiration and heart rate monitoring system at us-
ing commericial off-the-shelf (COTS) hardware. We present
Mobile VitalRadio (MoViRad), which aims to provide an
alternative solution in view of many prior works on wireless
sensing and monitoring. MoViRad leverages the use of fre-
quency modulated continuous waves (FMCW) to measure
minute chest movements, and takes a step further to ex-
tract the heart rate on from the measured breathing signal.
In this report, we describe the operation of MoViRad, and
demonstrates the successful extraction of breathing activity
and heart rate.

1. INTRODUCTION
Over the publications of the past few years, we have wit-

nessed on growing interest in wireless localization [1, 5] as
well as ubiquitous health monitoring [2, 4]. The advance-
ment in wireless localization technique demonstrates that a
resolution of sub-centimeter scale is achievable for indoor lo-
calization through wireless sensing, thus further contributing
to the implementation of smart home sensing and monitor-
ing applications. Early access to typical health condition
indicator such as breathing and heart rate proves critical
in evaluating the physical and mental conditions of peo-
ple. Additionally, it would benefit their medical treatment
if said data history was available in case of emergency. How-
ever, such task could not be accomplished without dedicated
hardwares at the moment (shown in Fig. 1), and the cost of
portable medical equipment imposes severe limiting factors
in people’s access to medical care.
In view of the expensive and bulky equipment setup as

well as inadequate availability, we investigate into the prior
works on the wireless monitoring system achievable with lit-
tle hardware overhead. Finding no truly satisfactory results,
we present our work: Mobile VitalRadio (MoViRad), which
measures physiological signals using only a COTS mobile de-
vice. The key features of MoViRad are that the only hard-
ware requirements are a cell phone for acoustic signal trans-
mission and reception as well as a laptop which processes the
collected data off-line. The breathing and heart rate mea-
surement is conducted similar to the prior works based on
frequency modulated continuous wave (FMCW) [2, 4] such
that the minute respiratory movement caused by chest trans-
lates into frequency shift in the spectrum, make it possible to
be captured given sufficient resolution by applying Fourier

Figure 1: Illustration of hardware overhead ob-
served including portable medical device and USRP
required. Our goal is to devise an android app which
is capable of monitoring breathing and heart rate.

analysis. Applying the Fast Fourier Transform (FFT) to
the received signal after down-conversion, we can perform a
coarse search for the breathing signal by locating the peak
in the FFT spectrum corresponding to the distance between
the cell phone and the user. Higher resolution tracking of the
breathing activity is achieved by measuring out the phase of
the corresponding peak. Once the breathing signal is ob-
tained, the heart beat is visible as a higher frequency signal
riding on top the recovered breathing signal. Consequently,
by exploiting use of ballistocardiography (BCG) which refers
to body movement that is synchronous with heart beat due
to ventricular pump activity, we are able to extract the heart
rate information masked on top of the breathing signal by
filtering the recovered breathing signal. By taking another
FFT on the recovered phase data, we can locate the heart
beat by using the method introduced in Vital-Radio [2].
All the measurements are conducted using ultra-sonic waves
to ensure that signals transmitted are inaudible to humans
during measurements. At the moment, MoViRad operates
assuming a pre-knowledge of the location of the user with
respect to the cell phone. To integrate the function of lo-
cating user of interest would be our future development of
MoViRad, alongside providing a real-time streaming of the
breathing and heart rate measurements without storing data
collected over long time period as required by ApneaApp [4].

The rest of the report is organized as follows. First, we
discuss the two prior wireless sensing networks of which our



project build upon in Section 2. Section 3 presents the im-
plementation of MoViRad, starting by an explanation of
FMCW method followed by a discussion of the hardware
synchronization and how to extract the breathing from the
phase of desired FFT peak. Section 4 presents the exper-
imental data we have obtained, demonstrating the proper
operation of MoViRad measuring up to two patients at dif-
ferent distances. Finally, Section 5 summarizes our project
and discusses about aspects to be considered to further im-
prove the functionality of MoViRad.

2. RELATED WORKS
MoViRad is implemented based on the prior publications

investigating into wireless localization utilizing a radar tech-
nique: FMCW, or frequency modulated continuous wave [1,
2, 4]. Specifically, VitalRadio discusses the selection of fre-
quency bands to sweep for the transmitted signal, and pro-
vides a clear guidance in terms of the trade-off between min-
imum distance detectable and sweeping bandwidth [2]. Op-
erating at RF frequency band from 5.46GHz to 7.25GHz,
VitalRadio is implemented using software defined radio (
USRP). We want to avoid additional hardware overhead as
in ApneaApp [4], which essentially converts the smart phone
into a sonar system and transmits ultra-sonic waves in the
form of FMCW signal to detect the movement of the chest.
It is also worth mentioning that ApneaApp did not demon-
strate the extraction of heart rate, motivating us to think of
the possibility of duplicate the functionality of VitalRadio
using acoustic medium. Finally, ApneaApp is not available
yet as the developing team held it from publication in pro-
cess of acquiring FDA approvals. As a result, we proposed
to explore and implement MoViRad as an open-source mo-
bile application which monitors and measures the breathing
and heart rate.

3. MOVIRAD OVERVIEW
This section presents an overview regarding the implemen-

tation of MoViRad. Specifically, we first present a review of
the theoretical background for FMCW and how one maps
the frequency shift to an absolute distance. Then, we will
addresses the sampling frequency offset issue observed be-
tween transmitter and receiver.

3.1 FMCW Spectrum: Peak for Coarse Esti-
mate

In order to extract the breathing signal, we need to de-
tect the minute chest movement, which is typically on the
order of centimeters. Adequate accuracy is possible based
on the recent advancement for indoor wireless localization
using FMCW technique. As shown in Fig. 2, an FMCW is
created and transmitted using as a sinusoidal wave whose
frequency is modulated to change linearly with respect to
time.
Denoting the transmitted signal as TX(t), and the FMCW

transmits signals with frequency varying between fmin and
fmax within a period of TS , we have

TX(t) = ej2π( k
2
(t2+fmint)) (1)

where k denotes the carrier modulation frequency in the
FMCW signal. It is defined as:

k =
∆f

∆t
=

fmax − fmin

TS
(2)

Figure 2: FMCW operation. The transmitted sig-
nal frequency changes linearly with respect to time
across the sweeping bandwidth. As a result, the re-
flected signal RX(t) will simply be a time-delayed
version of the TX(t).

In order to obtain the relative distance measurement, we
record the received signal RX(t), which will contain both
the near-field TX(t) signal as well as the reflected signal to
the received signal (RX). Since the transmitted signal fre-
quency changes linearly with time, reflected signal will be a
time-delayed replica of the TX-signal, and the time required
for the propagation would be linearly translated as a fre-
quency shift. In the presence of multiple paths in wireless
transmission, without loss of generality, the received signal
RX could be described as a linear combination of multiple
TX(t) each with their own delay.

RX(t) =
∑
i

Aie
j2π( k

2
((t−τi)

2+fmin(t−τi))) (3)

where τi is the delay caused by ith path. Specifically, to
properly measure the received frequency shifts, we multiply
RX with TX to perform down-conversion, then apply a low-
pass filter to the product and obtain the RX signal as:

LPF{RX(t) · TX(t)} =
∑
i

Aie
j2π(kτit+fminτi) (4)

The time-delay τi is now observed as a peak in the low-
frequency spectrum, and we can back-calculate the relative
distance from the measured path delay τi as:

D =
c · τi
2

=
c

2
· ∆f

k
(5)

where c denotes the propagation velocity of the carrier; in
our case, c = 340m/s, which is the speed of sound at room
temperature. Notice that after down-conversion, the spec-
trum located at carrier frequency would now reside at DC.
In other words, ∆f directly measures the absolute distance
between the object under test and the cell phone. Given that
wireless reflections add up linearly over the medium, mul-
tiple objects could be identified simultaneously at different
locations as indicated in Fig. 3.

3.2 FMCW Spectrum: Phase for Fine Esti-
mate

As shown in the section above, the spectrum only leads us
to a coarse estimate regarding the corresponding frequency
range. As with all short-time Fourier transforms, there is
an inherent trade-off between frequency resolution and time
resolution. Due to the time length of FFT, which was pri-
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Figure 3: Spectrum of the simulated down-
conversion of RX(t). We emulate reflections at 30cm,
50cm and 80cm and we are able to recover the loca-
tion of all three with one FFT.

marily limited by hardware, the resolution of the distance
estimate could be calculated as:

Dmin =
c

2
· ∆fmin

k
(6)

The FFT is typically applied to one frame of such FMCW
transmission, as the discontinuities between FMCW frames
are accentuated by the hardware platform. Given this, the
minimum frequency shift that we are able to identify is equal
the bin spacing of the resulting FFT, which can be calculated
as:

∆fmin =
1

TS
(7)

Hence, Eq.(6) translates to a distance resolution of:

Dmin(t) =
c

2
· 1/TS

k
=

c

2× FS
(8)

where FS = fmax−fmin is the selected frequency bandwidth
of the FMCW carrier. Eq.(8) indicates that the distance
resolution only depends on the sweeping bandwidth. For
example, with FMCW chirp signal sweeps between 18kHz
to 20kHz, the minimum distance that could be identified is
calculated to be 8.5cm, which could not sense the small vari-
ation of chest movement. Therefore, we seek to extract the
phase of the corresponding FFT peak as a fine estimate of
the location [2]. As shown in Eq.(4), the FFT of the down-
converted signal has a phase expression that also changes
periodically with time at frequency of k · τi. This informa-
tion can be extracted based on the coarse estimate from the
peak location. As a result, we focus on the frequency bin of
interest, and monitors the phase variation across time.
However, due to limited FFT resolution, it is unlikely that

our frequency will fall at the bin chosen. It is instead more
likely that the frequency will fall between two bins, creating
significant skirting in FFT spectrum. Additionally, there
will be a constant frequency offset foffset, defined as:

foffset = |ftrue − fbin| (9)

Measuring the phase now has two components: the in-
tegral of foffset as well as the recovered movement signals.
Assuming the user is static relative to bin spacing during

operation, the foffset will accumulate linearly. Applying a
linear regression to the obtained phase data, we can esti-
mate and calibrate for foffset and can obtain fine estimate of
the chest movement.

Since the phase wraps every 2π, with linear regression
applied to the unwrapped phase, it leads us to the desired
breathing signal. Once the breathing signal is extracted,
the heart beat would show itself as a small periodic ripple
on top the breathing signal. Consequently, we would apply
FFT on the breathing signal, and identify the heart rate.
Typically, the breathing signal has much higher power in
the resulting FFT spectrum and the leakage may create an-
other peak. Therefore, we will not report this peak due to
breathing signal leakage at lower frequency, but we search
for the strongest peak after bandpass filtering around valid
heartbeat frequencies.

3.3 MoViRad Implementation Challenges
The first part of the section discusses about the back-

ground theory necessary to understand the operation of MoVi-
Rad. In the practical implementation, we have run into a
few issues that we believe are worth mentioning: (1) filtering
of the chirp signal, and (2) sampling frequency offset (SFO).

• FMCW transmission signal is filtered before practical
transmission. The selected sweeping bandwidth in our
implementation is from 18kHz to 20kHz, and it shows
the form of a saw-tooth shape. In theory, this fre-
quency band falls into the ultra-sonic region for typ-
ical adult hearing, yet the hardware creates audible
clicking at the discontinuity between the two consec-
utive frames. In order to alleviate the audible noise
due to cell phone’s hardware limitation, a triangular
filter is applied which zero-forces the chirp signal at
the discontinuity. While the audible noise does get re-
moved, the filtering causes another practical issue in
the implementation (as shown in Fig. 4): it directly
reduces the usable sweeping bandwidth of the FMCW
transmission, therefore degrading the distance resolu-
tion achievable (following the calculation of Eq.(8)).
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Figure 4: Exaggerated illustration of the effect of
filtering on the FMCW transmitted signal. In our
implementation, we left about 1% of TS at the two
discontinuities.

• Sampling frequency offset (SFO). We ran into the SFO
at our initial use case: using the cell phone as the trans-



mitter and using the laptop as the receiver. Since the
sources are separated and not synchronized, there will
be a non-zero delay between the two recordings. In
order to match up the TX and RX frames, we first
compute a cross-correlation between TX and RX sig-
nals to figure out the necessary delay before doing the
down-conversion. As shown in Fig. 5, the sampling
frequency offset between the cell phone and the laptop
makes it difficult to distinguish the correct delay value
corresponding FMCW in the RX.
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Figure 5: Illustration of the SFO problem if TX and
RX are processed using different hardwares..

In view of this problem, we implement an Android
application that is responsible for both sending and
recording the FMCW signal. With this test setup, the
SFO issue is resolved, and we could easily align the TX
and RX signal by processing the collected audio data
offline in our laptop. The correlation results between
TX and RX is presented in Fig. 6 (a), when only cell
phone is used for data collection. Zooming into the
maximum correlation point in Fig. 6 (b), we see that
the peaks correspond to FMCW frame delays, which
are multiples of TS . Furthermore, we could observe
the effect of multi-path as small peaks are found near
each peak. We believe that running the correlation
is necessary to correctly align the sent and received
frames so that we could properly apply FFT across
each frame of the FMCW signal.

4. EXPERIMENTAL MEASUREMENTS

4.1 Implementation
Our implementation consists of the following components:

• Hardware: The main hardware requirement is an An-
droid phone. In our implementation, a Motorola Droid
Turbo is used which is equipped with speaker with a
bandwidth of at least 20kHz and a microphone that
samples audio signal at rate of 44.1kSa/s.

• Software: An Android application, MoViRad, is im-
plemented to conduct the FMCW transmission and
recording simultaneously using the cell phone. As shown
in Fig. 7, one chooses the FMCW chirp signal gen-
erated, with or without filtering applied. Then we
hit ”START RECORD” followed by ”PLAY” to ensure
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Figure 6: (a) Cross-correlation between the TX and
RX signals, which are sent and recorded using only
cell phone. (b) Zooming in near the correlation
peak.

that all the FMCW frames are recorded throughout
the experiment duration.

The collected data is currently processed off-line us-
ing MATLAB. First, we compute the cross-correlation
between generated FMCW signal and received audio
signal. As explained in Section 3.3, we need the corre-
lation results to confidently align the first frame of RX
to the first frame of TX as no extra delay needs to be
applied. Then, we would use the MATLAB to apply
an FFT on the received signal and extract the desired
breathing and heart rate information.

4.2 Experimental Evaluation
Shown in Fig. 8 is the setup of our experiment on evalua-

tion of the MoViRad performance. We use a tripod to hold
the cell phone instead of having the phone held in hand to
eliminate any direct disturbance on the receiver. Addition-
ally, the tripod helps us to avoid any problems with near-
field reflections overpowering the microphone. We adjust
the holding position of the phone so that the phone’s speaker
and microphone point at the participant’s chest. The exper-
iment is conducted in a relatively open space indoor (base-
ment of Coordinated Science Laboratory) to mitigate possi-
ble interference from multipath. During the measurements,



Figure 7: Interface of MoViRad application.

participants are wearing daily T-shirts and jeans with dif-
ferent fabric materials.

Figure 8: Experimental setup.

In order to characterize the performance, our extracted
results are compared with ground-truth. In terms of breath-
ing counts, we use the number reported by the participant.
For the heart rate, the measurement from Pulse Oximeter is
cited as the reference. During the experiment, participant
is wearing the oximeter on his index finger (not shown in
Fig. 8).
The evaluation of MoViRad is presented from two per-

spective. First, the accuracy of the breathing and heart
rate is shown across distance. In this case, the participant
stands at 30, 50, and 70 inches away from the tripod and we
measure the breathing and heart rate. As shown in Fig. 9,
the breathing rate accuracy is measured to maintain at least
87.8% with standard deviation of 1.3%. On the other hand,

the heart rate is measured with an accuracy of at least 92.8%
with standard deviation of 6.5%.

A
c
c
u

ra
c
y
 [

%
]

Figure 9: The accuracy of breathing and heart rate
measurement versus distance of the participant rel-
ative to the phone.

Next, we investigate into the effect of the participant’s
orientation relative to the receiver. In this case, we measure
and extract breathing and heart rate when the participant
stands facing towards as well as sideways with respect to the
cell phone. As shown in Fig. 9, the breathing rate accuracy is
measured to maintain at least 88% with standard deviation
of 1.3%. On the other hand, the heart rate is measured with
an accuracy of at least 92% with standard deviation of 5.4%.
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Figure 10: The accuracy of breathing and heart rate
measurement versus the orientation of the partici-
pant relative to the phone.

Overall, consistent performance of breathing and heart
rate measurement is observed for MoViRad. One problem
associated with the accuracy measurement of the breathing
rate is that the ground truth relies on the reported count
based on the participant. However, due to their ultra-sonic
nature, we do not exactly know the starting and ending of
the ultra-sonic FMCW signal so that there may be some
rounding error for the one-minute duration of the recording.



5. CONCLUSIONS
This project report summarizes our implementation of

MoViRad, a mobile application that is capable of monitoring
breathing and heart rate at no additional hardware cost. At
the moment, all the data processing are conducted off-line
using MATLAB. Additionally, our data processing assumes
the approximate location of the user a priori in order to ex-
tract the breathing and heartbeat signals. Accuracy rates of
over 90% are shown for heartbeat detection, and over 85%
for breathing using COTS hardware.
For future work, we encourage readers to investigate ”real-

time” processing of the data collected. We note due to the
low frequency of breathing, what would otherwise be con-
sidered severe latency is acceptable. Furthermore, based on
previous work done using distributed FMCW [3], we believe
it is possible to integrate the functionality such that MoVi-
Rad is able to detect the user location, even if the user is
moving. This would require more careful analysis of the
phase extraction methodology, as a simple linear analysis
fails when the user moves between FFT bins. Lastly, we
note that many phones have multiple microphones in order
to mitigate background noise during phone and video calls.
If the distance between the microphones is known, static ob-
jects could be calibrated out similar to a MIMO interface.
This would significantly reduce the amount of noise in the
FFT spectrum due to skirting caused by near-field signals,
which should in turn lead to higher accuracies.

6. ACKNOWLEDGMENTS
The authors would like to thank the tripod for holding

the cell phone steady during the experiments, as well as
Haitham Hassanieh for providing the motivation during this
project.

7. REFERENCES
[1] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3d

tracking via body radio reflections. In Proceedings of
the 11th USENIX Conference on Networked Systems
Design and Implementation, NSDI’14, pages 317–329,
Berkeley, CA, USA, 2014. USENIX Association.

[2] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C.
Miller. Smart homes that monitor breathing and heart
rate. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
CHI ’15, pages 837–846, New York, NY, USA, 2015.
ACM.

[3] W. Mao, J. He, and L. Qiu. Cat: High-precision
acoustic motion tracking. In Proceedings of the 22Nd
Annual International Conference on Mobile Computing
and Networking, MobiCom ’16, pages 69–81, New York,
NY, USA, 2016. ACM.

[4] R. Nandakumar, S. Gollakota, and N. Watson.
Contactless sleep apnea detection on smartphones.
GetMobile: Mobile Comp. and Comm., 19(3):22–24,
Dec. 2015.

[5] W. Wang, A. X. Liu, and K. Sun. Device-free gesture
tracking using acoustic signals. In Proceedings of the
22Nd Annual International Conference on Mobile
Computing and Networking, MobiCom ’16, pages
82–94, New York, NY, USA, 2016. ACM.


