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Abstract—We present two minimal, efficient voice classifiers
that are able to maintain reasonable voice activity detection
numbers within a certain SNR bound. An analog system only
requires six bits of precision to maintain 90% detection accuracy
assuming at least 10dB of SNR. A digital system can use fractions
of the primary ADC’s range while also maintaining similar levels
of accuracy. The primary motivation of this work is to minimize
area, power, and complexity of intelligent classifiers, as well as
linearizing the power-complexity trade-offs.

I. INTRODUCTION

Systems are becoming more and more intelligent in order
to better serve their user bases. Computational devices began
with no programmability, only able to execute their hard-
coded features. Input streaming began with large mechanical
switches, and output streaming began with gears and pulleys
to visualize results. That clearly does not scale, so programma-
bility swiftly increased to allow users to interact with results
via a shared memory. Once systems became intelligent to
operate on their own, other streaming data inputs can be
added. Modern systems today combine many results using
sensor fusion in order to create intelligent systems. As personal
computation devices such as smartphones become more and
more popular, the amount of information available increases
exponentially. This however presents a problem to the end
user, as computational speed and battery life have not enjoyed
the same scaling.

In this paper, we present a introductory solution to what
is becoming one of the most common inputs for intelligent
systems: voice detection and classification. Some work has
already been done to overcome this, namely, intelligent voice
assistants such as Microsoft’s Cortana or Apple’s Siri offload
the voice related tasks from the CPU to separate digital signal
processing (DSP) chips. These chips, while enjoying lower
power relative to a full CPU, still draw significant amounts
of power when operating. Furthermore, given the sporadic
nature of voice input as well as need for rapid response, these
chips are effectively always on. Work has also been done to
minimize the data acquisition characteristics through use of
compressed sensing in the analog domain before handing it
off to a digital processor. Unfortunately, these systems are not
robust to changes in volume, dynamic range, or other context
changes. Implementing dynamic control over these systems
is effectively the same workload as operating a full DSP at

best, and similar to a CPU at worst. This severely limits the
system’s usability.

The clear method for power and performance optimization
involves breaking up the task into detection and classification.
To an always-on classifier, all data is equal, and it will
spend equal amount of energy trying to classify an input.
This is not the case for the human brain however. Imagine
the following situation: a user is attempting to talk to his
smartphone in public in a foreign country. The phone will
waste time continuously processing the background noise for
no reason. The human brain will recognize that it does not
understand the background noise, and will gradually filter
it out. This is where inspiration for our project began, by
separating useless data from useful data. We seek to create
a novel architecture for detecting voice activity in order to
linearize the power-complexity curve (as shown in Fig. 1).
Current systems implement a “step function”, as they threshold
the input for any signal, then activate the entire classifier.
An ideal power-complexity proportional system would ideally
have a linear power demand as a function of the complexity
of the input task.

For this project, we propose two architectures for a voice
activity detection circuit. One system is an analog front-end
inspired by previous work [1] which focuses on minimizing
power and robust performance in high signal-to-noise (SNR)
scenarios. This system involves a bank of bandpass filters in
the analog domain to extract relevant features, then running
through a decision tree trained a priori. The other system is
a digital architecture focused on re-using existing area and
online linear. This system uses a sub-set of the system ADC
for feature extraction and allows dynamic scaling in order to
best adapt to changes in the classification context.

The paper is organized as follows. In Section II, we present
an overview of classification using decision trees, as well as
architectures for each system. In Section III, we present the
datasets chosen for this project and the motivation behind
them. In Section IV, we show simulated results of both
classifiers. Lastly, we summarize our results and present our
conclusions in Section V.

II. SYSTEM OVERVIEW

Currently machine learning and deep learning is a very
popular topic. Research in those areas is showing exponential
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Fig. 1. Power-complexity proportional classification (dashed line) compared
to traditional classification (solid line).

improvements over traditional systems in terms of classifica-
tion accuracy in all sorts of problems. However, as classifica-
tion accuracy increases more and more, there is an unspoken
power cost that also increases. One of the most impressive
achievements has been DeepMind’s AlphaGo beating a world
champion in the game of Go, a game long thought nearly
impossible to train a computer to play at all, let alone at a
world championship level. What was less impressive was the
hardware required to do - 1,202 CPUs and 176 GPUs [2]. This
is beyond reasonable to use on a mobile device, as such a
system can not provide that amount of power instantaneously,
let alone continuously.

For this project, we focused on the simplest architecture to
both train and implement in hardware: a decision tree classifier.
A simple example is shown in Fig. 2. This tree was constructed
with the Titanic passengers dataset, which attempts to predict
the survival rate of an individual on the Titanic given certain
features. A decision tree classifier works by making a simple
inequality check at each node, iterating down the tree based
on the decision. If the node is a leaf, then the tree classifies
the data accordingly.

We trained our decision tree by using the Gini impurity
metric. Other metrics are equally popular, such as entropy
minimization or variance reduction, but they do not lend them-
selves well to online learning in hardware as they either require
large amounts of calculation or use difficult to implement
operations like logarithms. The Gini impurity metric (IG) is
straight-forward in comparison. For each item x, the metric
aims to maximize the probability p that each item is assigned
to the correct class k out of N possible classes:

IG(x) =

N∑
i=1

p(i|x)(1− p(i|x)) = 1−
N∑
i=1

p(i|x)2 (1)

In our case, we use binary levels - either audio is detected
or not. This makes solving for the optimal feature to use
at each node quite simple, as we merely have to count the

Fig. 2. A decision tree classifier built using the Titanic passengers dataset.

incorrectly classified labels once per feature per node. Upon
iterating over the number of available features in a node, and
we choose the one that provides the largest Gini impurity as
the splitting feature. We descend into each node and continue
this manner recursively until sufficient accuracy is reached. For
both systems, the base classifier was a full binary decision tree
with a maximum depth of 5, which corresponds to 25 = 64
decision nodes. This number was chosen through empirical
testing to be a reasonable threshold for accuracy-complexity
curves.

Many voice activity detection algorithms have been previ-
ously used for feature extraction, but they are again to complex
to reasonably implement in real-time on a low power classifier.
One of the most popular features to use is Mel frequency
cepstrum coefficients (MFCCs). However, calculating MFCCs
involves taking a Fourier transform, binning the spectrum into
M bins, taking M logarithms, then taking a discrete cosine
transform on those values. The other popular metric is to
measure harmonicity, which is a normalized autocorrelation
over a wide window. Both of these are reasonable calculations
for a DSP voice classifier, but not for a voice detection
algorithm, as they are too computationally complex.

Instead, we simply use the average energy in several fre-
quency bins. We construct the frequency bins by running the
input data through a set of bandpass filters, then integrating
the result to get an approximate measure of the energy in each
bin. These are the only inputs to our classifier. The method
in which we obtain these inputs for both systems is described
below. The last important metric is the number of samples to
take in one decision, which we’ll refer to as the feature window
size. There is a clear trade-off here between the confidence of
the decision and the latency of the decision when it comes
to the feature window size. A common range is 15 to 30
ms. Any shorter than that, and there is not enough data to
computer. Any longer, and the classifier will possibly miss
relevant data for its task. We chose 20 ms as balancing point
for this, although this was not tested to find if it was optimum.



Fig. 3. The analog feature extractor system add integrator not comparator.

A. Analog System

The analog system was the first architecture designed, as it
fit in very well with the goal of minimizing power in classi-
fication. Rather than use any complex digital calculations, we
simply construct a bank of analog bandpass filters. From there,
we take the output of each bandpass filter, rectify the signal,
then put it into a clocked integrator. The integrator resets
every feature window size time period to zero. A theoretical
implementation of this is shown in Fig. 3.

The filters are designed as first order bandpass filters with
0dB passband gain and a Q of 2. The filter bank’s center
frequencies cover one decade: 400Hz to 4kHz, distributed log-
arithmically. We use an ideal rectifier passed into an integrator
with 10Hz bandwidth to perform the summing. Following that,
each weight is passed to the decision tree. Each node of the
decision tree consists of a low-offset comparator that compares
a hard-coded Vref to the relevant feature node. A simple
combinatorial logic circuit would then decode the output of
all leaf nodes into a single binary label - 1 or 0. In the event
voice is detected, a flag is sent high to turn on the ADC and
voice classifier processor.

While this is the most power-efficient implementation, it
also leaves the classifier quite rigid, which motivated the
digital subsystem discussed in Section II-B. If we later find an
optimal set of filters or coefficients that significantly improve
our classification accuracy, it will be difficult to update. One
possible solution is to have an on-chip DAC to generate the
Vref biases. For the level of precision required for the decision
tree classifier biases, the DAC step size would need to quite
small, on the order of 10 µV. Another option would be to
selectively trim voltages the bias voltages within a range, this
is often done for high-precision chips as a one-time calibration
(OTP). This leads to a clear trade-off between trimming offset
and classifier area.

The only analog discontinuity modeled is noise, in which
we add uniform Gaussian noise to model input referred noise
(discussed in Section III). Modeling passband gain variation, Q
variation, and comparator offset are metrics that were outside
the scope of this project, but are likely not too impactful
to the project’s results. Previous work has shown that voice
activity training algorithms are robust to constant offsets, as

Fig. 4. A subset of the analog classifier chain, showing an intermediate node
and several leaf nodes.

Fig. 5. SAR ADC average switching energy as a function of resolution.

they simply show up as bias terms in the training algorithms
[3].

B. Digital System

One downside of the aforementioned analog system is the
area required. In order to support these low frequencies,
larger capacitors are required to provide the low frequency
corners. For reference, in 90nm, the capacitor area required
is approximately 80µm × 50µm, per filter. This adds up
quite quickly, motivating us to explore smaller solutions as
well. Similarly, the rigidness of the above system prompts
an investigation into creating a similar architecture, but with
more tunability. We note that regardless of whether or not a
voice classifier is being used, the hardware is still there. Dark
silicon, the idea that a majority of the chip is simply not used,
is a rising problem in multi-core CPU and GPU architectures
[4]. Again, while it is clear that the minimal power solution
maximizes dark silicon, as that is saved power, it is worth
investigating silicon reuse opportunities.

Obviously using the voice classifier ADC at full rate and
full input range is an already implemented solution. Here,
we instead opt to only use a select number of the bits,
effectively sub-sampling the precision of the ADC. For our
argument, we assume the ADC is implemented as a successive
approximation register (SAR) ADC. Previous work has shown



Fig. 6. A system overview of the “precision sub-sampling” ADC.

quite clearly that the energy spent in switching a SAR ADC
is directly proportional to the resolution of the ADC [5].

The digital classifier system we construct will, at a high-
level, sub-sample the voice classifier ADC to detect voice
activity. We implement the same feature extraction described
above, by constructing a bandpass filter bank, rectifying each
bin, then summing digitally to get a total bin power. Once
voice activity has been detected, we will “activate” the full
resolution of the ADC, and allow voice classification to occur.
Since the training thresholds are fully digital, we open the
option for online training. The system can scale its input
resolution as well as adjust the threshold values quite easily, as
they are just digital control words. Adapting the tree structure
itself is actually fairly simple as well, meaning we can train
the full classifier in hardware.

The reason it’s simple to retrain a binary decision tree
classifier is due to the decision metrics as it is robust against
poor training data organization. If the training set were consist
of 50k positive samples followed by 50k negative samples,
that would result in low test set accuracy when using a batch
or stochastic gradient descent trainer. Since the Gini impurity
metric only concerns itself with the quantity of each class per
feature, not the ordering, online learning is significantly easier.

III. DATASETS + TRAINING

A. Datasets

Any classifier is only as good as the data it can train on,
so it’s critically important to have a large amount of valid
data. We used four primary audio sources for this: TIMIT [6],
NOIZEUS [7], KitchenSound [8], and UrbanSound [9]. Each
dataset however, had a unique recording situation, requiring
significant amount of data cleaning in order to maintain
equality amongst all input data.

The TIMIT dataset consists of 630 speakers of eight
different dialects of American English. Each speaker reads
approximately Each file consists of an approximately 2 second
long clip of a speaker reading a sentence, with no noticeable
noise in the background. This dataset was recorded at 16kHz
sampling rate with 16-bit accuracy. Only two of the This data

was used to provide the majority of the positive examples for
our training set.

The NOIZEUS dataset contains 30 sentences repeated by six
speakers (three male, three female) across seven background
noise scenarios: onboard-train, babble, car, exhibition hall,
restaurant, street, airport, and train station. This data was
recorded at 25kHz, 16-bit and digitally downsampled to 8kHz.
Furthermore, the same data is duplicated across all scenarios
for varying SNR values: 0dB, 5dB, 10dB, and 15B SNR, as
well as a “clean” set with no added noise. This data was used
to provide robustness across many environments and contexts.

The KitchenSound dataset consists of 22 different kitchen
sounds repeated 20 times. The data was recorded at 44.1kHz
and 16-bit audio. The UrbanSound dataset consists of 8 dif-
ferent urban sound environments such as: jackhammer, siren,
car horn, and air conditioner. This data was also recorded at
44.1kHz and 16-bit audio. None of these files contain human
voice, which makes this an excellent dataset for training
against false positives. While our primary classification goal is
to minimize the number of false negatives, we would also like
to not waste power by turning the classifier on for no reason.

Lastly, all data is available in its sampled and uncompressed
form. By ensuring this, we can hope to avoid any inaccuracies
from audio noise or distortion due to compression. Of course,
since all the data is sampled and therefore digital, it will be
difficult to get a true approximation of the analog classifier’s
performance. It is our assumption that the accuracy of the
16-bit audio recorders is much larger than the accuracy of an
implemented analog classifier, so that way we have established
an accuracy ceiling.

B. Training

The classifiers were built in Python using the
scikit-learn [10] and Scipy [11] packages. An
initial DecisionTreeClassifier was trained using
approximately 100k window frames of data. While this was
not all of the available data to train on, it represented a
reasonably large fraction of the data. The dataset was equally
balanced into positive and negative classes in order avoid
balancing issues later on.

Each training file had the relevant class generated through a
simple thresholding method. The TIMIT dataset only consists
of human voice, so we can simply check the mean-squared
value of the frame-window compared to a predetermined
threshold. An example of this training labeling is shown in
Fig. 7. For the NOIZEUS dataset, simply thresholding isn’t
valid for the high SNR cases, as the noise will appear above
the threshold. For this dataset, a look-up table of references
was created based on the “clean” files, then it was referenced
by the high SNR files.

When training the classifier, care was taken to shuffle the
input data, as to prevent any unintentional bias or overfitting
through training order. The training data was broken into an
80/20 split of training and cross-validation samples. This was
also split in a way that gave balanced classes across both
datasets. We picked the tree that gave the highest floating



Fig. 7. An example audio clip with the labeling overlaid on top of it.

point accuracy across 10 cross-validation iterations as our
baseline. From there, we constructed quantized decision trees
by quantizing every threshold of the decision tree.

IV. SIMULATION RESULTS

The test dataset consisted of the same items for all results
shown below. For our negative classes, we tested on 10 Ur-
banSound files (one from each class) and three KitchenSound
test files. The KitchenSound test files are each two minutes
long and hold one example of every sound trained on. For
our positive results, we tested using the airport, babble,
and car environments in the NOIZEUS dataset. We note that
the human voice data for all environments is the same in the
NOIZEUS dataset, so our classifier may have lower accuracy
when compared to unseen audio data.

A. Threshold Quantization

For both classifiers, the first significant metric is the ac-
curacy in the decision thresholds. Whether these are analog
precisions coming from a DAC or digital word sizes in a DSP
core, the resolution compared to the input data is important
metric. For this test, we only use the ideal floating point data
to simulate uncompressed inputs. These results are shown in
Fig. 8.

We obtain a minimum accuracy of 90% after using at
least six bits of resolution. This suggests that both systems
can reasonably expect to use low-precision hardware without
large sacrifices in data performance. Additionally, it shows that
high-precision hardware does not necessarily lead to higher
accuracy rates. Beyond 10 bits, the accuracy varies by less
than 1%, which is not significant enough to record. Our initial
assumption is that the classifier is primarily dominated by
SNR, as here the quantization noise scales exponentially with
resolution.

B. Noise Performance

Instead of comparing accuracy here, we instead compare
the F1 score of our classifier. The F1 score is defined based
on the metrics precision and recall:

Fig. 8. Decision tree threshold resolution using ideal data compared to
decision accuracy.

Fig. 9. Decision tree threshold resolution compared to F1 score as a function
of input data SNR.

Precision =
tp

tp+ fp
(2)

Recall =
tp

tp+ fn
(3)

F1 = 2 · precision · recall
precision + recall

(4)

In order to validate our previous guess of noise being
the dominant factor, we swap from the ideal data set to the
NOIZEUS dataset and test it across all available SNR values.
These results are shown in Fig. 9. We suspect there is an
error in the 5-bit resolution tree, and ignore it as an outlier.
Following that, it’s clear that SNR of our does indeed directly
affect our output accuracy. However, it’s not clear if the fall-
off from the previous test is due to quantization noise or SNR,
we perform another test.



Fig. 10. Input resolution compared to

C. Input Quantization

Here, we are interested in testing our input quantization
effects. This is for implementation with the digital system,
where we are sub-sampling the precision of the ADC. For
this test, the accuracy of the thresholds is double the accuracy
of the input quantization. This ensures the threshold can
always be between two input quantization labels, assuming we
maintain the same precision for our digital operations (filtering
and integrating).

This confirms that the primary reason for noise was due
to the input SNR, not any artifacts of input quantization. The
magnitude of this result is surprising and certainly merits more
testing.

D. Sparsity

Lastly, we test the sparsity of our tree classifier. We’ll define
the sparsity S of our classifier as:

S =
∑

wtree = 0 (5)

Which is to say, the number of “zeros” in our tree nodes. We
know that each energy value will be positive during the feature
window, so we can safely say a zero node has no impact on
the tree. We would like to minimize the sparsity of the tree,
as will result in extra hardware that serves no function. Our
results for sparsity as a function of threshold quantization are
shown in Fig. 11.

This is where the maximum tree depth of 5 came from.
Any deeper tree resulted in significantly higher sparsity, as
more nodes did not provide any more accuracy after a certain
depth.

V. CONCLUSION

In conclusion, we present two minimal, efficient voice
classifiers that are able to maintain reasonable voice activity
detection numbers within a certain SNR bound. An analog
system only requires six bits of precision to maintain 90%
detection accuracy assuming at least 10dB of SNR. A digital
system can use fractions of the primary ADC’s range while
also maintaining similar levels of accuracy. We hope this

Fig. 11. Viewing data sparsity as a function of threshold quantization

work will continue to motivate explorations into low-power
intelligent systems.
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