A 0.7V Time-based Inductor for Fully Integrated Low Bandwidth Filter Applications

Braedon Salz, M. Talegaonkar, G. Shu,

A. Elmallah, R. Nandwana,

B. Sahoo, P. K. Hanumolu

Outline

- Motivation
- Proposed Architecture
- Circuit Implementation
- Measurement Results
- Summary

Filter Metrics

- Frequency
- Gain
- **Bandwidth**

- Power
- DR

Bandpass Filter Topology

Bandpass Filter Topology

Ideal Gyrator Circuit

$$Z_{IN} = \frac{sC_G}{G_{MB}G_{MF}}$$

Practical Gyrator

G_M cells have finite output impedance

Small Signal Gyrator Model

Gyrator can be viewed as RLC circuit

Gyrator Transfer Function

Gyrator Quality Factor

Inductor Modeling

L scales inversely with integrator gain

Need a better integrator!

Time-Based Integrator

$$K_{VCO} = \frac{F_{OUT}}{V_{IN}}$$

$$F_{OUT} = \frac{\partial \Phi_{OUT}}{\partial t} = s \; \Phi_{OUT}$$

$$H_{VCO}(s) = \frac{\Phi_{OUT}(s)}{V_{IN}(s)} = \frac{K_{VCO}}{s}$$

Oscillator is a V to Φ integrator

Ring Oscillator

- V_{CTRI} converted to current by PMOS
- Delay cells easily scalable, low area

Back to the Voltage?

PD converts input phase to PWM voltage output

Time-Based Inductor

Time-Based Inductor

$$L = \frac{1}{K_{VCO}K_{PD}G_M}$$

Effect of VCO F_{FR} Mismatch

Any offset is continuously integrated

PD Input Range

K_{PD} has limited linear input range

$$V_{IN} = A\sin(\omega_{IN}t)$$

$$\Delta F = A K_{VCO}$$

$$\Delta \Phi = \frac{AK_{VCO}}{\omega_{IN}} \leq \Delta \Phi_{Max}$$

Generating V_B

Use a PLL to limit low-frequency response

Generating V_B

20

Inductor Q vs K_{VCO}

Inductor Q vs PLL Bandwidth

Mitigating PWM Tones

Mitigating PWM Tones

PWM tones move to MF_{VCO}

Reducing Spurious Tones

Reducing Spurious Tones

Reducing Spurious Tones

Complete Architecture

Voltage-Controlled Oscillator

- Each delay cell is an inverter
- Biasing controlled by current-limiting PMOS

Delay Cell

Need to bring output phase to full scale

Phase Detector

• Two-state PD gives $K_{PD} = 1/2\pi \text{ V/rad}$

Switched G_M Cell

- Mirror G_M used to match currents
- Diff pairs prevent transient discontinuities

Type-I PLL

Design Specifications

- K_{VCO} tunable from 50 MHz/V 500 MHz/V
- G_M tunable from 10 μA 50 μA / cell
- L tunable from 150 µH 1.5 mH

Die Photo

- Fabricated in TSMC 65nm CMOS
- Inductor occupies 0.017 mm² area

Measurements

- Tested inductor in PCB passive filter
- Consumes 528µW of power

Test Schematic

Results limited by parasitic capacitance

Summary

 Time-based inductor achieves significant area reduction

 Highly digital design scales with process

Inductance value easily tunable

Acknowledgements

 Analog Devices Inc. for financial support

 BDA for providing Analog Fast Spice (AFS) simulator